Analysis of Activated Carbon Monolith Derived from Carrot Juice Waste for Supercapacitor Electrode Application

Dewi Ramayani, Yanuar Hamzah, Erman Taer, Novi Yanti, Afriwandi Apriwandi

Abstract


Abstrak. Pengembangan sistem penyimpanan energi elektrokimia yang efektif dan efisien menjadi sangat penting pada era evolusi teknologi dan industri modern saat ini. Penelitian ini mengemukakan karbon aktif sebagai bahan dasar material elektroda untuk diaplikasikan pada piranti penyimpan energi, khsusunya superkapasitor melalui analisa densitas, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) dan Cyclic Voltammetry (CV). Karbon aktif berbentuk monolit disiapkan dari ampas jus wortel melalui pendekatan pirolisis satu tahap terintegrasi dan aktivasi kimia KOH. Proses pirolisis satu tahap terintegrasi dilakukan melalui penggabungan karbonisasi dan aktivasi fisika dalam atmosfer gas N2/CO2. Berdasarkan analisis data, karbon aktif menunjukkan sifat amorf yang normal dan sifat porositas terkonfirmasi. Lebih lanjut, sifat elekrokimia dievaluasi menggunakan metode Cyclic Voltammetry (CV) pada sistem dua elektroda. Kapasitansi spesifik yang dihasilkan sebesar 155 F/g dalam elektrolit 1 M H2SO4 dengan energi spesifik dan daya spesifik adalah 21,52 Wh/kg dan 77,57 W/kg. Berdasarkan analisa ini maka ampas jus wortel terkonfirmasi berpotensi sebagai karbon aktif untuk elektroda yang diaplikasikan dalam piranti penyimpan energi superkapasitor.

Abstract. The development of an effective and efficient electrochemical energy storage system is very important in today's era of technological evolution and the modern industry. This research suggests that activated carbon is the raw material for electrode materials to be applied to energy storage devices, especially supercapacitors through density analysis, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), and Cyclic Voltammetry (CV). Activated carbon in the monolith form derived from carrot juice waste was prepared through a one-stage integrated pyrolysis approach and chemical activation of KOH. An integrated one-stage pyrolysis process was carried out by combining carbonization and physical activation in an N2/CO2 gas atmosphere. Based on data analysis, activated carbon performed normal amorphous behavior with confirmed porosity features. Furthermore, the electrochemical properties were evaluated using the Cyclic Voltammetry (CV) method at the two-electrode system. The specific capacitance was found as high as 155 F/g in the 1 M H2SO4 aqueous electrolyte with specific energy and specific power as high as 21.52 Wh/kg and 77.57 W/kg, respectively. Based on this analysis, the carrot juice waste has been confirmed to have the potential as activated carbon for the electrodes applied in supercapacitor energy storage technology.

Keywords: Carrot Juice Waste, Activated Carbon, Electrode Materials, Supercapacitor


Keywords


Ampas wortel; karbon aktif; material elektroda; superkapasitor

Full Text:

PDF

References


Abioye, A.M., Ani, F.N., 2015. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renew. Sustain. Energy Rev. 52, 1282–1293.

Ahmed, S., Ahmed, A., Rafat, M., 2018. Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes. J. Saudi Chem. Soc. 22, 993–1002.

Bhattacharjya, D., Yu, J.S., 2014. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J. Power Sources 262, 224–231.

Changmai, M., Banerjee, P., Nahar, K., Purkait, M.K., 2018. A novel adsorbent from carrot, tomato and polyethylene terephthalate waste as a potential adsorbent for Co (II) from aqueous solution: Kinetic and equilibrium studies. J. Environ. Chem. Eng. 6, 246–257.

Deng, J., Xiong, T., Wang, H., Zheng, A., Wang, Y., 2016. Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain. Chem. Eng. 4, 3750–3756.

Deraman, M., Daik, R., Soltaninejad, S., Nor, N.S.M., Awitdrus, Farma, R., Mamat, N.F., Basri, N.H., Othman, M.A.R., 2015. A New Empirical Equation for Estimating Specific Surface Area of Supercapacitor Carbon Electrode from X-Ray Diffraction. Adv. Mater. Res. 1108, 1–7.

Erabee, I.K., Ahsan, A., Zularisam, A.W., Idrus, S., Daud, N.N.N., Arunkumar, T., Sathyamurthy, R., Al-Rawajfeh, A.E., 2017. A new activated carbon prepared from sago palm bark through physiochemical activated process with zinc chloride. Eng. J. 21, 1–14.

Foo, K.Y., Hameed, B.H., 2012. Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation. Bioresour. Technol. 112, 143–150.

González-García, P., 2018. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sustain. Energy Rev. 82, 1393–1414.

Kumar, K., Saxena, R.K., Kothari, R., Suri, D.K., Kaushik, N.K., Bohra, J.N., 1997. Correlation between adsorption and x-ray diffraction studies on viscose rayon based activated carbon cloth. Carbon N. Y. 35, 1842–1844.

Ma, F., Ding, S., Ren, H., Liu, Y., 2019. Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Adv. 9, 2474–2483.

Mensah-Darkwa, K., Zequine, C., Kahol, P.K., Gupta, R.K., 2019. Supercapacitor energy storage device using biowastes: A sustainable approach to green energy. Sustain. 11.

Ong, L.K., Kurniawan, A., Suwandi, A.C., Lin, C.X., Zhao, X.S., Ismadji, S., 2012. A facile and green preparation of durian shell-derived carbon electrodes for electrochemical double-layer capacitors. Prog. Nat. Sci. Mater. Int. 22, 624–630.

Pandolfo, A.G., Hollenkamp, A.F., 2006. Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27.

Poonam, Sharma, K., Arora, A., Tripathi, S.K., 2019. Review of supercapacitors: Materials and devices. J. Energy Storage 21, 801–825.

Rangabhashiyam. S, Balasubramanian. P, 2019. The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application-A review. Ind. Crops Prod. 128, 405–423.

Scott, K., 2016. Electrochemical principles and characterization of bioelectrochemical systems, Microbial electrochemical and fuel cells. Elsevier Ltd.

Song, M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z., Huang, Y., 2013. The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass and Bioenergy 48, 250–256.

Taer, E., Apriwandi, A., Yusriwandi, Y., Mustika, W.S., Zulkifli, Z., Taslim, R., Sugianto, S., Kurniasih, B., Agustino, A., Dewi, P., 2018a. Comparative study of CO2 and H2O activation in the synthesis of carbon electrode for supercapacitors. AIP Conf. Proc. 1927, 030036–1–030036–6.

Taer, E., Dewi, P., Taslim, R., Purnama1, A., Apriwandi, Agustino, Setiadi, R.N., 2018b. The Synthesis of Carbon Electrode Supercapacitor from Durian Shell Based on Variations in the Activation Time. 1 st Int. Conf. Exhib. Powder Technol. Indones. 2017 1927.

Taer, E., Natalia, K., Apriwandi, A., Taslim, R., Agustino, A., Farma, R., 2020. The synthesis of activated carbon nano fiber electrode made from acacia leaves (Acacia mangium wild) as supercapacitors. Adv. Nat. Sci. Nanosci. Nanotechnol. 11, 25007.

Wei, X., Wei, J.S., Li, Y., Zou, H., 2019. Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. J. Power Sources 414, 13–23.

Xia, X., Liu, H., Shi, L., He, Y., 2012. Tobacco stem-based activated carbons for high performance supercapacitors. J. Mater. Eng. Perform. 21, 1956–1961.

Yang, S., Wang, S., Liu, X., Li, L., 2019. Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors. Carbon N. Y. 147, 540–549.

Yang, V., Senthil, R.A., Pan, J., Khan, A., Osman, S., Wang, L., Jiang, W., Sun, Y., 2019. Highly ordered hierarchical porous carbon derived from biomass waste mangosteen peel as superior cathode material for high performance supercapacitor. J. Electroanal. Chem. 113616.

Zhang, W.L., Xu, J.H., Hou, D.X., Yin, J., Liu, D.B., He, Y.P., Lin, H.B., 2018. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. J. Colloid Interface Sci. 530, 338–344.

Zhang, Y., Yu, S., Lou, G., Shen, Y., Chen, H., Shen, Z., Zhao, S., Zhang, J., Chai, S., Zou, Q., 2017. Review of macroporous materials as electrochemical supercapacitor electrodes. J. Mater. Sci. 52, 11201–11228.




DOI: https://doi.org/10.24815/jacps.v10i2.18392

Refbacks

  • There are currently no refbacks.


INDEXED AND HARVESTED BY

   

 

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

©2020 | J. Aceh Phys. Soc. | Banda Aceh, Indonesia | www.jurnal.unsyiah.ac.id/JAcPS | E-ISSN 2355-8229