Potential of ZnO/ZnS as electron transport materials on Perovskite Solar Cells

Ilham Yurestira, Arie Purnomo Aji, Muhammad Feri Desfri, Ari Sulistyo Rini, Yolanda Rati

Abstract


Abstrak. Sel surya berbasis perovskite merupakan sel fotovoltaik generasi terakhir yang mampu memanfaatkan energi surya dengan efisiensi tinggi dan dapat difabrikasi melalui proses yang sederhana dan murah. Sejak diperkenalkannya perovskite solar cell (PSC), efisiensi konversi dayanya telah mencapai efisiensi di atas 23% dalam waktu yang relatif singkat diiringi dengan peningkatan publikasi ilmiah di bidang ini. Penggunaan semikonduktor ZnO sebagai Electron Transport Material (ETM) yang merupakan salah satu bagian utama dalam PSC mulai dilirik akibat proses pembuatan yang lebih sederhana dibandingkan TiO2. Seng oksida (ZnO) masih memiliki kelemahan yang dapat diatasi dengan penambahan ZnS untuk mengurangi rekombinasi pembawa muatan dari lapisan perovskite ke ETM. Tujuan dari artikel ini adalah untuk menyajikan tinjauan singkat tentang status terkini mengenai komposit ZnO/ZnS sebagai elektron transport material pada sel surya perovskit. Ulasan ini juga membahas peran penambahan ZnS dalam memperbaiki morfologi dalam ukuran nano dan sifat optik material sekaligus meningkatkan kinerja PSC beserta penjelasan mengenai mekanisme dasar operasi piranti untuk memberikan pemahaman yang lebih baik tentang sifat dari ZnO/ZnS sebagai ETM pada sel surya perovskit.

 

Abstract. Perovskite-based solar cells are the latest generation of photovoltaic cells capable of utilizing solar energy at high efficiency and can be fabricated through a simple and inexpensive process. Since the introduction of the perovskite solar cell (PSC), its power conversion efficiency has reached efficiencies above 23% in a relatively short period of time accompanied by an increase in scientific publications in this field. The use of ZnO semiconductors as Electron Transport Material (ETM), which is one of the main parts of PSC, has begun to be noticed due to the simpler manufacturing process compared to TiO2. Zinc oxide (ZnO) still has a weakness which can be overcome by adding ZnS to reduce the recombination of the charge carriers from the perovskite layer to the ETM. The aim of this article is to present a brief overview of the current status of ZnO/ZnS composites as an electron transport material in perovskite solar cells. This review also discusses the role of addition of ZnS in improving morphology in nanosize and optical properties of materials as well as improving PSC performance along with an explanation of the basic mechanism of device operation to provide a better understanding of the properties of ZnO/ZnS as ETM in perovskite solar cells.

 

Keywords: Perovskite solar cell, Composite, ZnO, ZnS dan Electron Transport Material.


Keywords


Perovskite solar cell, Komposit, ZnO, ZnS dan ElectronTransport Material

Full Text:

PDF

References


Chan S.H,. Chang Y.H,. dan Wu M.C. 2019. High Performance Perovskite Solar Cells Based on Low Temperature Processed Electron Extraction Layer. Front. Mater. 6:57.

https://doi.org/10.3389/fmats.2019.00057.

Chen, R., Cao, J., Duan, Y., Hui, Y., Chuong, T. T., Ou, D., Han, F., Cheng, F., Huang, X., Wu, B., dan Zheng, N. 2019. High-Efficiency, Hysteresis-Less, UV-Stable Perovskite Solar Cells with Cascade ZnO-ZnS Electron Transport Layer. Journal of the American Chemical Society. 141 (1): 541–547.

Danilchuk, D., Nour, B., dan Dahal, L. 2016. Development of Low-cost Hybrid Perovskite Solar Cells. Proceedings of The National Conference On Undergraduate Research. 1–7.

Diao. X., Tang. Y., Xie. Q., Chen. D., Li. S., and Liu. G 2019. Study on the Property of Electron-Transport Layer in the Doped Formamidinium Lead Iodide Perovskite Based on DFT. ACS Omega. 4: 20024−20035.

Jeon, N.J., Noh, J.H., Kim, Y. C., Yang, W. S., Ryu, S., Seol, S. 2014. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials. 13 : 897–903.

Ke, S.M., Chen, C., Fu, N.Q., Zhou, H., Ye, M., Lin, P., Yuan, W.X., Zeng, X. R., Chen, L., Huang, H.T. 2016. Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices. ACS Appl. Mater. Interfaces. 8 : 28406–28411.

Kojima, A., Teshima, K., Shirai, Y., dan Miyasaka, T. 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society. 131 (17): 6050–6051.

Liang, Y. C., & Wang, C. C. 2018. Surface crystal feature-dependent photoactivity of ZnO-ZnS composite rods: Via hydrothermal sulfidation. RSC Advances, 8(9), 5063–5070. https://doi.org/10.1039/c7ra13061a.

Luo, J., Wang, Y., Zhang, Q. 2018. Progress in perovskite solar cells based on ZnO nanostructures. Solar Energy. 163 : 289-306.

Nugroho, P. 2004. Devais Mikroelektronika ZnO. Teknik Elektro UGM : Yogyakarta.

Oku, T. 2014. Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells. Solar Cells - New Approaches and Reviews. 3: 76-101.

Ranjith, K.S., Castillo, R.B,. Sillanpaa, M,. Kumar, R.T.R,. 2018. Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties. Applied Catalysis B: Environmental.237: 128-139.

Rini, A.S., Deraf, M.P., Yanuar, H., Umar, A.A. 2020. Liquid Phase Deposition of TiO2 Films for Electron Transport Layer of Perovskite Solar Cells. Journal Of Nano-And Electronic Physics.8 (3): 03019.

Singh, S. P., dan Nagarjuna, P. 2014. Organometal halide perovskites as useful materials in sensitized solar cells. Dalton Transactions. 43 (14): 5247–5251.

Stanislav I, Sadovnikov. 2019. Synthesis, properties and applications of semiconductor nanostructured zinc sulfide. Russian Chemical Reviews. 88 (6). https://doi.org/10.1070/RCR4867Zhou, D.,

Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., Sum, T. C., dan Lam, Y. M. 2014. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy and Environmental Science. 7 (1): 399–407.

Ulya, N. 2012. Pengantar nanoteknologi: Indium Tin Oxide (ITO) untuk Aplikasi Solar Cell 238–246. Bandung: ITB.

Xing, G.C., Mathews, N., Sun, S.Y., Lim, S.S., Lam, Y.M., Gratze, M.l., Mhaisalkar, S., dan Sum, T.C. 2013. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342 (2013) 344–347.

Xu, G., Ji, S., Miao, C., Liu, G., Ye, C. 2012. Effect of ZnS and CdS coating on the photovoltaic properties of CuInS2-sensitized photoelectrodes. Journal of Materials Chemistry. 22 : 4890–4896.

Yang, W.S., Park, B.W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H. Seok, S.I. 2017. Iodide Management in Formamidinium Lead Halide Based Perovskite Layers for Efficient Solar Cells. Science. 356 : 1376-1379.

Yokoyama, T., Cao, D. H., Stoumpos, C.C., Song, T. B., Sato, Y., Aramaki, S., Kanatzidis, M. G. 2016. Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas–Solid Reaction Film Fabrication Process. Journal Phys. Chem. Lett. 7 : 776–782.

Zhang, P., Wu, J., Zhang, T., Wang, Y., Liu, D., Chen, H., Ji, L., Liu, C., Ahmad, W., Chen, Z. D., & Li, S. 2018. Perovskite Solar Cells with ZnO Electron-Transporting Materials. Advanced Materials, 30(3). https://doi.org/10.1002/adma.201703737.

Zhang et al., Popa, M., Zakhidov, A., & Tiginyanu, I. 2018. Perovskite solar cells with ZnS as electron transport layer. Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science, 19(4): 559–566.

Zheng, E., Wang, Y., Song, J., Wang, X. F., Tian, W., Chen, G., dan Miyasaka, T. 2018. ZnO/ZnS core-shell composites for low-temperature-processed perovskite solar cells. Journal of Energy Chemistry. 27 (5): 1461–1467.

Zhou, T., Tian, Y., Zhu, X., dan Tu, Y. 2018. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. Journal of Nanomaterials. Available at: https://doi.org/10.1155/2018/8148072.




DOI: https://doi.org/10.24815/jacps.v10i2.18383

Refbacks

  • There are currently no refbacks.


INDEXED AND HARVESTED BY

   

 

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

©2020 | J. Aceh Phys. Soc. | Banda Aceh, Indonesia | www.jurnal.unsyiah.ac.id/JAcPS | E-ISSN 2355-8229